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1  Write down the fifth roots of unity. Hence, or otherwise, finldtlae roots of the equation

z° = —16+ (16+/3)i,

giving each root in the forme®. [4]
2 Thesequenca,, U, U,, ... issuch thati, =1 and
U,.,=-1+v(Uu +7).
(i) Prove by induction that < 2 foralln> 1. [4]

(if) Show thatifu =2 - ¢, wheree is small, then

- 1
Un+l ~2— 68. [2]
3  The curveC has equation
Y=
whereA is a non-zero constant. Obtain the equations of the asyeyptdC. [3]

In separate diagrams, sketChfor the cases where
@iy A >0,

(i) 2 <O.
[4]

4  Solve the differential equation

2
% + 33—2(/ +2y = 24€%,
. dy
given thaty = 1 and— = 9 whenx = 0. [7]

dx

5 Inthe equation
X +a +bx+c=0,

the coefficient®, b andc are real. It is given that all the roots are real and greatar th

(i) Prove that < -3. [1]
(i) By considering the sum of the squares of the roots, proveathat?b + 3. [2]
(iii) By considering the sum of the cubes of the roots, proveahat—9b — 3c - 3. [4]
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6 Let

1
2_
| = J-O(1+x) N dx,

wheren > 1. By consideringc?—x(x(l + xz)‘"), or otherwise, prove that

—N
anl_ . =(2n-1) +2™". [5]

n
_3 1
Deduce that, = S + 3. [3]
7  Write down an expression in terms ofandN for the sum of the series

N
Y 27" [2]
n=1

Use de Moivre’s theorem to deduce that

10 1025 sirf
Yy 2™ sin(l—lonn) = r(lon)l .
= 2560- 2048 co$-7)

8 Find the coordinates of the centroid of the finite region by thex-axis and the curve whose
equation is

y=x(1-X). [7]

Deduce the coordinates of the centroid of the finite regiambled by the-axis and the curve whose
equation is

y=X(1-x)>2 [2]

9 The planed], andIl, have vector equations
r=A0+j-k)+pu (2 —j+k) and r=A4,>+2 +Kk)+ (3 +j - k)

respectively. The liné passes through the point with position vector4%j + 6k and is parallel to
bothI1, andIT,. Find a vector equation fdr [6]

Find also the shortest distance betwéand the line of intersection df, andIL,. [4]
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10 Itis given that the eigenvalues of the matiix where

4 1 -1
M = (—4 -1 4),
0 -1 5

are 1, 3, 4. Find a set of corresponding eigenvectors. [4]

Write down a matrixP? and a diagonal matri® such that

M" = PDP Y,
wheren is a positive integer. [2]
Find P~ and deduce that
40
lim 4M"=1 3 0 3 [5]
30 3
11 Find the rank of the matriA, where
1 1 2 3
A= 4 3 5 16 . (3]

6 6 13 13
14 12 23 4

Find vectorsc, ande such that any solution of the equation

0
Ax=| 2 )
3
can be expressed in the fooy) + 1€, whereld € R. [5]
Hence show that there is no vector which satisfies (*) and his alements positive. [3]

© UCLES 2005 9231/01/0/N/05



12
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Answer onlyone of the following two alternatives.

EITHER
1,3 13_H2,1
Show thafn+3)” - (n-3)” =3n"+3. [1]
N
Use this result to prove thgt, n” = IN(N + 1)(2N + 1). [2]

n=1
The sumsS, T andU are defined as follows:

S=12+22+3%+4%+ ...+(2N)2+(2N+1)2,
T=12+3+5°+ 7%+ ...+ (2N -1)2+ (2N + 1),

U=12-22+32-42+ ... - (2N)?+ (2N + 1)2.
Find and simplify expressions in termsdffor each ofS T andU. [5]
Hence
(i) describe the behaviour $ asN — oo, [1]
(ii) prove that ifg is an integer thenE— is an integer. [3]
OR

The curvesC, andC, have polar equations
r =4coso and r=1+cosé
respectively, Where%n <0< %n.

(i) Show thatC
that cosx =

andC, meet at the pointé\ (3, ) andB (5, —a), wherea is the acute angle such

: [2]

Wik

(i) In asingle diagram, draw sketch graphshfandC,,. [3]
(iif) Show that the area of the region bounded by the @&sndOB of C, and the aréA\B of C,,, is

4r - 1v2-a. [7]
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